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Abstract-Genetic algorithms are adaptive search procedures loosely based on the Darwinian notion of 
evolution. They use rules of natural selection to investigate highly complex, multidimensional problems 
and have been employed successfully in a variety of search, optimization and machine learning applications 
in science and engineering where other more traditional methods fail. In this study genetic algorithms are 
presented and discussed within the framework of an adaptive solution methodology for investigating 
otherwise intractable optimization problems in the thermosciences. The exposition focuses on their appli- 
cation to an electronics cooling problem where it is required to find optimal or nearly optimal arrangements 
of convectively cooled components placed in-line on the bottom wall of a ventilated two-dimensional 
channel. The present application is specific only for purposes of illustration. The power of the methodology 
rests on its generality of application and an indifference to the source of data (experimental, analytical or 
numerical) used in the optimization process. The study shows that genetic algorithms allow a cost-effective 
approach for investigating highly complex numerical and/or experimental thermosciences problems where 
it is desirable to obtain a family of acceptable problem solutions. as opposed to a single optimum solution. 

1. INTRODUCTION 

IN THE thermosciences it is frequently the case that 
relatively complex flow and heat transfer problems 
can be accurately formulated and often solved by 
means of closed form analysis or numerical com- 
putation. Accuracy of’forrnulation implies a correct 
physico-mathematical representation of the phenom- 
ena investigated in terms of the equations that 
describe the conservation laws, constitutive relations, 
equations of state, boundary and initial conditions, 
etc. Accuracy qf’ solution, whether analytical or 
numerical, implies mathematicaliy correct manipu- 
lation and calculation of the equations representing 

the physical phenomena. When fundamental under- 
standing and, therefore, physico-mathematical rep- 
resentation are incomplete, or when the analy- 
tical/numerical tools available are not equal to the 
mathematical complexities of the solution task, exper- 
imentation may yield partial, sometimes complete, 
solutions of the problems. In this case, in addition to 
accuracy it is indispensable to maintain the precision 
required to minimize random uncertainties in the 
measurements. In the present numerical study it is 
presumed that precision (in the sense associated with 
experimentation) is not a source of calculation uncer- 
tainty and that it can be maintained at the level 
required. In addition, special attention is paid to the 
accuracy of problem formulation, presuming that 
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computational speed and memory requirements can 
be met. 

There is a growing class of thermosciences problems 

that can be accurately formulated and solved, or pre- 
cisely experimented, for which it can be stated a priori 
that, except for trivial or rare circumstances, the opti- 
mal solutions cannot be found with a reasonable 
amount of work and in a reasonable amount of time. 
This is because the multidimensional nature and 
ranges of the associated variables and parameter 
spaces, and the non-linearities embedded in the math- 

ematical representations of the problems, combine to 
render impossible (in a practical sense) an exhaustive 
search for optimal solutions. In contrast, with con- 
siderable less effort many of these problems yield 
nearly optimal solutions which come close to mini- 
mizing a predetermined cost function, or maximizing 
a corresponding performance measure, while sim- 
ultaneously satisfying a set of imposed constraints. 

We are concerned here with developing a meth- 

odology that will facilitate the search for optimal or 
nearly optimal solutions of complex multidimensional 
thermosciences problems admitting accurate for- 
mulation and calculation, and/or precise exper- 
imentation. While this is a fundamental activity that 
could be couched in highly abstract and complicated 
mathematical terms, we have kept practical engin- 
eering applications in mind and, instead, have 
developed and tested some interconnected concepts 
for purposes of illustration. The activity com- 
municated in this paper is part of an ongoing study 
on Interactive Computational-Experimental Meth- 
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NOMENCLATURE 

cxponcnt in qualion ( 1 ) fog 
component ‘i’ [K] 

preexponcntial factor in equation (I) for 
component ‘i’ [fr Mh ‘1 

scaling constant in cquation (3) 
cost function in equation (2) 
maximum value of /‘in a gcncration 
fitness function or pcrfornmancc measure 

given by equation (3) 
total failure rate, CE., [fr Mh ‘1 
gravitational acceleration. 0.8 m s ’ 
Grashof number, y/1( T,, ,,,, - T,,)Ll ‘iv‘ 
component surface-averaged 
heat transfer coefficient 

[W m ‘K ‘1 

height of small component [cm] 
height of large component [cm] 

channel height [cm] 

component thermal conductivity 
[W m ’ K ‘1 
component length [cm] 
separation between components [cm] 

distance between channel exit plane and 
the downstream surfdcc of the last 
component [cm] 
wiring length between components ‘i’ 
and ‘j’ [cm] 
distance between channel inlet plane and 
the upstream surface of the first 

component [cm] 

number ofcomponcnts in an in-line 
arrangement 
parent one 

patent two 
current population at time t 
heat flux from component ‘i’ [W m ‘1 
Reynolds number, C’~?f/t# 

time [s] 

maximum surface tcmpcrature of 
component ‘i’ [K] 
uniform temperature of inlet flow [K] 

maximum r, [K] 
velocity component in .Y direction [m s ‘1 

velocity component in r direction [m s ‘1 
uniform velocity of inlet flow [m s ‘1 
first location for crossover operator 

second location for crossover operator 
strcamwisc coordinate 

transvcrsc coordinate 
chromosomes (also called strings or 
candidate solutions) denoting 
arrangements of N in-line components. 

Greek Symbols 

/I cocthcicnt of volume expansion. I :K, 

[K ‘I 
i, failure rate of component ‘i’ given by 

equation (1) [fr Mh ‘1 

; 
kinematic viscosity [m’s ‘1 
summation sign. 

odologies (ICEME) discussed in depth by Humphrey 
c>t al. [I]. 

Because of its fundamental and practical import- 
ance, WC have chosen to develop and illustrate the 
methodology in connection with the thermofluids- 
optimized packaging of electronic components. 
According to Weiss cut trl. [I!], advances in circuit 
integration and packaging have increased the power 
dissipation of typical electronic components on circuit 
boards from 5 to 50 kW m ‘. approximately, over the 
past few years. As a result, the potential for premature 
thermally-induced failures of electronic components 
has also increased with an attendant impact on cost. 
For example. according to the Department of Defense 
it is estimated that a 5 C reduction in the temperature 
of the air for cooling aircraft electronics could save 
IO million dollars annually in service and maintenance 
costs (Weiss (it N/. [2]). Thus, the achievement of cost- 
effective packaging designs is critical to the electronics 
industry. 

Olykctiw of’this irti~cJsti,yycrtion 
In searching for efficient ways to manage thermal 

dissipation. both rcsearchcrs and practitioners have 

found that the heat transfer from electronic com- 
ponents is very sensitive to variations in geometry 
when convection is the dominant heat transfer mech- 
anism (Azar cr nl. [3]). As a result, the thermofluids- 
optimized placement of heated components in ven- 
tilated enclosures, while simultaneously satisfying 
geometical, electrical, manufacturing and other prob- 
lem constraints, has also become an activity of 
considerable interest (and urgency) among ther- 
mosciences engineers. 

The specific objective of the present study can be 
abstractly stated as follows: for a given convective 
flow configuration, find the optimal or nearly optimal 
values for a set of variables and/or their related par- 
ameters that mimimizc a cost function, or maximize a 
corresponding performance measure while satisfying 
all imposed problem constraints. For example, the 
variables could be: the velocity, presure and tem- 
perature fields at specific locations; the geometrical 
shape. relative locations and orientations of inter- 
connected components: the shear stresses and heat 
fluxes at the component surfaces. Related parameters 
could bc : the Reynolds, Grashof, Prandtl and Nusselt 
numbers ; the form drag and skin friction coefficients ; 
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other dimensionless groups involving geometry length 
scales. The performance measure to be maximized is 

usually a complicated multidimensional function of 
quantities like the above and, often, it is multimodal, 
possessing several local maxima or minima. For the 
non-linear thermosciences problems of interest to this 
work an experiment could be performed to measure 
the variables and parameters used to guide the opti- 
mization process or, as in the present case, a set of 
transport equations for mass, momentum, and 
energy, together with the appropriate boundary and 

initial conditions, can be solved. 
The practical intractability of this class of problems 

is due to the typically large number and ranges of 
the variables and parameters that characterize the 
problems, and to the sensitivity of solutions to vari- 

ations in boundary conditions and parameter values. 
The sensitivity arises as a result of the non-linearities 

embedded in the equation set describing the problems. 
The multimodal nature of the performance measure 
function renders ineffective most conventional opti- 
mization techniques, such as hill-climbing algorithms 

when they apply, which fail because of their local 
nature (Jacoby et al. [4]). Statistical sampling tech- 
niques do not suffer from the local nature of the hill- 
climbing algorithms but their computation times grow 
rapidly with the dimensionality of the problem (Hill 
[5]). The state-of-the-art of solution methods for the 
kinds of optimization problems of interest here 
involves forms of random searches which make little 
(if any) use of the information available prior to, or 
acquired during, the search process. 

We claim that in order to effectively obtain optimal 
or nearly optimal solutions of complex multi- 
dimensional thermosciences problems it is necessary 
to implement an adaptive problem-solt’ing method- 

olog~~. By this we mean a strategy that dynamically 
accumulates information and uses it to improve prob- 

lem-solving performance. In this study we present 
an adaptive solution methodology based on genetic 
algorithms. These are search procedures loosely based 
on the Darwinian notion of evolution and rules of 
natural selection. The methodology is illustrated by 
reference to the problem of finding optimal or nearly 

optimal arrangements of convectively cooled heat 
sources. representing electronic components, on the 
bottom wall of a ventilated two-dimensional channel. 
This is similar to the problem investigated analytically 

by Dancer and Pecht [6] using a lumped formulation 
or ‘tank-and-tube’ approach. In contrast, in this study 
we pay close attention to resolving space- and time- 
variations of the velocity and temperature fields in 
order to satisfy the condition mentioned earlier con- 
cerning accuracy of problem formulation. The present 
problem solution approach is numerical in nature and 
is based on the finite difference transient how cal- 
culation procedure described by Schuler et al. [7]. 

It is important to note that, because the genetic 
algorithm approach is independent of the source of 
information upon which the optimization is based, 

what has been accomplished here using numerical 
solutions of a physico-mathematical model can be as 

readily achieved by reference to a properly designed 
and carefully executed experiment. Thus, the meth- 
odology developed is equally applicable to numerical 
and experimental sources of data. In fact, Humphrey 
et ul. [I] point out that in some difficult cases there 
may be considerable advantages to combining com- 
plementary experimental and numerical data bases 
for the purpose of accelerating problem solution. 

2. THE ADAPTIVE SOLUTION 

METHODOLOGY 

The present adaptive solution methodology oper- 
ates in much the same way as a standard feed-back 
loop in classical control theory. In this representation 
a complex process is connected to an adaptive strategy 
via a feedback loop. In this work the process is the 
thermofluids configuration of interest, represented by 
a physico-mathematical model which allows detailed 
calculations of its characteristics. This includes the 
conservation laws, constitutive relations, equations of 

state, boundary conditions and any other relevant 
information. In an application involving measure- 
ments the process would correspond to the real physi- 
cal system. that is, the experiment. Subject to the 
input data and control variables provided. the process 
generates output data and performance measures. In 
the present numerical application the input data are 
an initial set of known calculation conditions. In an 
experiment the input data might also include variables 
or parameters over which there is little or no control. 
The output data consist of values for field variables 
such as velocity, pressure and temperature, and 
associated quantities such as form drag and skin fric- 
tion coefficients and Nusselt numbers which are used 
to calculate the performance measures of the solutions 

obtained. 
Part of the output from the complex process pro- 

vides the input to the adaptive strategy used to opti- 
mize problem solving. The adaptive strategy is the 
procedure responsible for the dynamical accumulation 
of decision-making information through the feedback 
portion of the loop. It also generates the control 
actions that modify a current set of variables or par- 
ameters with the expectation that the changes will 
improve the process performance. Following De John 
[8], in the present methodology a given class of genetic 
algorithms is used as the adaptive strategy. 

3. OUTLINE OF GENETIC ALGORITHMS 

The genetic algorithm (GA) requires an initial set of 
possible solutions to commence the search for optimal 
solutions. Through a process based on concepts taken 
from evolution, using rules of natural selection the 
GA improves upon these solutions. In any calculation 
cycle, the set of candidate solutions at time t, P(t). 
operated upon by a GA is called the population and 
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each member of this set or grr~c,~/io~r, when encoded 
as a string of symbols. is called a (./11.0/110.\0111(‘. Ori- 
ginally pionecrcd by Holland [Y]. a GA may be 
abstractly represented by the following scqucnce of 
operations : 

t=O: 
Initialize P(f) ; 
Evaluate P( /) : 
while (termination condition not satisfied) do 
begin 

t=r+l: 
Select P (1) ; 
Recombine f’(r) ; 
Evaluate P(f) : 
end. 

in this representation each iteration in the ‘while’ 

loop produces a new generation of candidate 

solutions, a!so encoded as chromosomes. The expec- 
tation is that if a set of candidate solutions is properly 
encoded, and the ‘Select’ procedure and the GA oper- 
ators of the ‘Recombine’ procedure are appropriately 
chosen, each generation ofpcrrrnts will produce a gen- 
eration of childwn (the new set of candidate solutions) 
which, in general. will have an average performance 

better than the parent generation. It is the role of the 
GA operators to construct and propagate the features 
or Ls~he~?~u of those chromosomes responsible for the 
improved performance of some candidate solutions 
relative to others. A schema is like a similarity 
template. serving to revcal the subset of chromosomes 
possessing similarities at certain chromosome pos- 

itions (Goldberg [IO]). The schemata derived from 
good chromosome solutions within a generation pro- 
vide the huildfng blocks from which lo synthesize 
improved solutions in the offspring generation. 

In a typical GA, the initial set ofcandidate solutions 

is usually selected randomly. There arc no definite 
rules regarding the desired initial population size for 
a given problem but guidelines arc provided by Grc- 
fcnstette [I I]. The candidate solutions are encoded as 
fixed-length chromosomes for which different encod- 
ing schemes. such as binary and integer coding, have 
been used. For example, a chromosome indicating 
the sequential positions of four identical heated com- 
ponents distributed among ten possible locations in 
an enclosure could be represented as the string 
00 I 100 10 IO where a ‘0’ represents an empty location 
and a ‘I’ an occupied location. Generally. it is to be 
expected that the heat transfer characteristics of the 
physical arrangement represented by this chro- 
mosomc will differ from other arrangements given by, 
for example, 1010100010, 1001100100. etc. Further 
details concerning the usefulness and effectiveness of 
chromosome encoding in binary notation are avail- 
able in Goldberg [IO]. 

The purpose of the ‘Evaluate’ procedure in the 
sequence is to calculate the ,fitn~ss of each chromo- 
some. The fitness is a measure of performance associ- 
ated with each candidate solution. It is a very impor- 

tant quantity since the probability that a chromosome 
in the parent population will contribute ilx schema to 
the offspring generation is proportional to the chro- 
mosome’s relative fitness. Thus. a chromosome rcprc- 
senting a candidate solutioil with ;I high mcasurc of 
fitness according to sonic preestablished criterion 

should have a high probability of parenting children 
in the next gcncration of candidate solutions. The 
function of the ‘Select’ procedure is to specify the 
actual number of offspring that each parent chro- 

mosome contributes to the following generation based 
on the relative performance of that chromosome. For 
a discussion of different sclcction mechanisms see 
Baker [I?]. 

The ‘Recombine’ procedure contains the GA oper- 
ators that are expected to construct and propagate the 
schema responsible for good pcformance. The most 
prominent GA operators arc CUL~.FOI~C~ and ~ztrtufiorr. 

The crossover operator acts on two chromosomes 
at a time. on average generating fitter offspring by 
combining the schema in each parent. The mutation 
operator usually involves randomly (but infrequently) 
altering the value of one or more bits in a chromo- 
some. The crossover and mutation operators for 

binary chromosomes are discussed at length by, for 

example, Goldberg [IO]. 
While binary notation is optimal for the chro- 

mosome encoding of candidate solutions for many 
types of problems it may be inappropriate for others 
(Oliver e/ al. [ 131). There are certain cases where the 
symbols in the encoded solution may not be repeated 
and the operations of the GA operators must be suit- 
ably adapted. An cxamplc of this of special interest 
here is the encoding ofdiffcrent sequences of Ndistinct 
objects arranged in-line. In this case integer encoding 
is used and special GA operators arc necessary. In 
integer encoding each of the N objects is assigned a 
unique integer in the range I to N. and any string of 
these integers denotes a particular sequence or 
arrangement. Since the objects arc distinct, repeated 
integers are forbidden in this encoding scheme. The 
result is that the crossover operator must bc of a 
permutation or reordering type. 

Goldberg [IO] discusses in detail three basic types 
of permutation or reordering operators. These are: 
(i) partially matched crossover: (ii) order crossover ; 
and, (iii) cycle crossover. The operators are similar in 
terms of their actions and only the partially matched 
crossover (PMX) operator used here is described. 
With reference to Table I, two chromosomes (X. Y) 
rcprescnting candidate solutions or sequcnccs of 
N = 8 objects are aligned one over the other. A mat- 
ching section consisting of a scquencc of overlapping 
positions common to both strings is identified by ran- 
domly selecting two crossover sites. In Table 1 the 
matching section runs from position 111 to position 
V. As a result, elements 6, 5 and 8 in string k’ are 
paired with 1, 4 and 3 in string Y. The rule is that 
elements 6. 5 and 8 ~?thin ruk .srrir7g should exchange 
places rcspectivcly with elements 1. 4 and 3 lt,itl7in 
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Table I. Genetic operators for integer string representation of chromosomes: (a) partially matched 
crossover (PMX) operator. (b) mutation operator. See discussion in text 

Position 
III IV Candidate Solution I II 

X I 7 6 5 
Y 8 2 1 4 

X’ 6 1 I 4 
Y’ 3 2 6 5 

1 
X’ 6 7 1 4 
X” 6 7 8 4 

8 3 4 2 
;? 6 5 7 

PMX (a) 
3 8 5 ’ 
8 I 4 ; 

1 
3 8 5 
3 I 5 mutation (b) 

the same string. The resulting (X’, Y’) chromosomes viously investigated by Dancer and Pecht [6]. Because 
represent new sequences of the same objects and it is we do not invoke this approximation, the present 
exactly as if they had been generated as the result of problem does not admit a closed form solution and, 
the exchange of chromosome material. The expec- instead, must be calculated numerically. The flow con- 

tation is that over a few generations strings generated figuration serves as a model for the placement of chips 
this way will gradually evolve schema representing on a board or for the location of larger electronic 
desirable features. Table 1 illustrates the cor- components inside a ventilated enclosure. Thus. with 
responding mutation operator on the X’ chromo- reference to Fig. I, we ask: given N heated com- 
some. This involves randomly selecting two positions, ponents of rectangular cross-section to be distributed 
III and VI, in this string and exchanging their cor- among N equally-spaced locations on one wall of a 
responding elements. The result is the altered x” chro- ventilated two-dimensional channel, what are some 
mosome. Because crossover and mutation can also of the arrangements of the components, encoded as 
disrupt desirable schema, it is important to specify integer strings, that maximize a given performance 
appropriate settings for these two operators in a GA function while satisfying all imposed boundary con- 
(Goldberg [lo] and Davis [14]). ditions and known system constraints? 

In a GA application, the Select, Recombine and 
Evaluate processes just described are repeated from 
generation to generation until some convergence or 
termination criterion is met. 

To answer this question we note that the failure 
rate of an individual electronic component usually 
depends strongly on temperature and is assumed to 
vary according to the Arrhenius equation for the spec- 
ific rate constant of a chemical reaction. Thus. calling 

i, the failure rate per megahours (fr Mh ‘) of an 
electronic component i, we take 

4. PROBLEM DEFINITION, PROCEDURES 

AND TESTING 

4.1. Case study problem 
The flow configuration investigated is shown in Fig. 

1. The task is to find optimal or nearly optimal 
arrangements that minimize the total thermal failure 

rate of N in-line convectively cooled electronic 
components in an air-ventilated channel. This is a 

combinatorial minimization problem not suited to 
gradient based optimization techniques. A simpler 

(analytically tractable) version of this problem, based 
on a lumped formulation approximation, was pre- 

2, = B, exp- ‘s 7fl. (1) 

In equation (I) 7’, is the maximum temperature of 
component ‘i’. The quantities B, and A, are the analogs 
to the frequency (or preexponential) factor and acti- 

vation energy of reaction, respectively. In the present 
application these two coefficients are assumed to be 
independent of temperature but may vary among 
component types and must be determined exper- 
imentally or taken from data available in the litera- 
ture. 

. 
UJO 

H 

FIG. 1. Schematic of the thermofluids problem of interest showing eight heated components randomly 
placed at equally spaced locations on the bottom wall of an air-ventilated two-dimensional channel. The 
conditions are: U = 0.5 m ss’, To = 300 K. H = 2 cm. hi/H = 0.1. h2/H = 0.2, Ll/H = I, L2/H = I, 

LuIH = 2, Ld/H = 4.5. The figure is not drawn to scale. 



A quantity,/ must be defined which r-cprcscnts the 
cost function to bc minimized. Howcvcr. bccausc the 
GA works to maximiLe ;I non-negaticc performance 
measure or fitness function, a mapping of the cost 
function. f. to a fitness function. F-, is rcquircd. The 

transformation used in this study is 

/..I/’ -/ 111.1\ (3) 

whcre,f,,,.,, is the largest value of,fassociated with one 
of the chromosomes in the current population. This 
function has the desirable property that it apportions 
higher values of fitness to chromosomes with lower 

cost functions. In a typical thermal application,f’is a 
function of the i, for which concrctc expressions arc 
provided in the examples discussed below. 

For the special case of geometrically identical com- 
ponents, the optimal solution for the present Case 
Study Problem is trivial in two cases i/’ t/?r, cu~ai)‘sis 

is hasi~d 0f1 0 lurnpel fhwudutiot~ qprorrdi such as 

performed by Dancer and Pecht [6]. Such an analysis 
predicts that : (i) if the thermal sensitivities, B,, of the 

components arc ali the same but the components difl’el 
in their heat fluxes. then they should be arranged in 

an increasing order of their heat fluxes; and, (ii) if, 
however, the heat fluxes of the components arc all the 
same but they differ in their thermal sensitivities, then 
they should be arranged in a decreasing order of their 
thermal sensitivities. (While these two ‘rules of thumb’ 
have proven useful in the electronics industry, WC 
will show below that they can lead to non-optimal 
arrangements for conditions where the lumped for- 
mulation approach is inapplicable.) 

Of interest here is the more general and much more 
difficult case when the heated components differ in 
size, thermal sensitivity and heat transfer charac- 
teristics. For cxamplc, finding the optimal solution, 
by cnumcration. for a configuration involving N = 8 
different components would alone require 8! = 40 320 
distinct numerical simulations (or the equivalent 

amount of experimentation) to determine the charac- 
teristics of all the possible component arrangements. 
Clearly, even within the context of a numerical 
approach such as the present one. this rcprescnts a 
prohibitively large calculation cflort. As we will show, 
the effort can bc reduced substantially using a GA to 
guide the search for optimal solutions. 

The GA code used in this study is a substantially 
modified version of the SGA (Simple Genetic Algo- 
rithm) code presented in Goldberg [IO]. The main 
differences between the SGA and the present code, 
MSGA (Modified-SGA). are the following. First. the 
Case Study Problem described above requires a per- 
mutation representation for the chromosomes instead 
of the binary representation provided in SGA. As a 
result, the GA operators in the ‘Recombine pro- 
cedure had to bc redefined. Specifically, the crossover 
operator in the MSGA is the so called partially 
matched crossover of Goldberg and Lingle [15] in- 

stead of the one-point crossover operator used in the 
SGA. Additionally. the mutation operator was rcdc- 
fined so that, when mutation is spccificd. two positions 
in the permutation reprcscntation of the chromosome 

are selected and their values exchanged. Second. the 
MSGA employs an diti.st .srrutq~ in its ‘Sclcct’ pro- 

ccdurc. In this strategy the tittcst chromosome in ;I 
current gcncration is automatically passed on 

~lr~h~rngc~l to the new generation whcrc it rcplaccs the 
least fit chromosome in that generation. 

The ‘Sclcct’ procedures in both the MSGA and 
the SGA USC a weighted random sampling technique 

discussed by Goldberg [IO] and Davis [14] as the 
reproduction mechanism. Essentially, this technique 
is equivalent to spinning a roulette wheel that is 

divided into a number of sectors equal to the number 
of chromosomes in a generation, with the size of each 

sector proportional to the fitness of the chromosome 

it represents. In this way, the probability of selecting 

a particular chromosome for reproduction is pro- 
portional to its fitness. 

The MSGA requires the following input par- 
ameters : population size. chromosome length. num- 
ber of generations, crossover and mutation rates. A 
report is generated when the number of generations 
specified by the user has been reached. The report 
contains two types of information : (i) a record of the 
input values introduced by the user and some statistics 
related to the initial population: (ii) a specification 
of the chromosomes. their fitness values. crossovcr- 
related information and relevant statistics for each 
generation. 

Part of a sample report gcneratcd by the MSGA is 
provided in Table 3, discussed in more detail further 
below. The report shows. for instance. that in Gen- 
eration 2 the second string 53178462 has a fitness 
value F = 0.00045 corresponding to a f’ailurc rate of 
FR = 0.01 179 fr Mh ‘. This chromosome had strings 

# 6 and # 7 from Gcncration I as its parents. The 
parents were subjected to a partially matched cross- 

over operator between positions I and 2 as indicated 
in columns ‘.Y I ’ and ‘.u2’. The resulting offspring chro- 
mosome was subsequently subjected to a mutation 
between two randomly sclectcd locations (not indi- 
catcd in the table). In these reports. if a chromosome 
(such as string # I. 84657321, in Generation 2) is 
preceded by values of 0 in the parents and crossover 

columns, this indicates that it was passed on 
unchanged from the parent generation to the offspring 
generation as a result of the elitist strategy. 

In order to evaluate the fitness values of the integer 
strings representing solutions of the Cast Study Prob- 
lem we must perform measurements or calculations. 
In tither approach, the impact of recirculating flow 
regions on fluid motion and heat transfer must be 
resolved. In this study fluid motion and heat transfer 
were calculated numerically using the fully elliptic. 
time-marching CUTEFLOWS algorithm of Schuler 
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et al. [7]. The numerical procedure is based on spa- putational grid consisting of (X = 90, J = 22) nodes 

tially second-order accurate finite-difference approxi- was used. The calculation time step was 0.001 s. The 

mations of the conservation equations derived using grid non-uniformity allowed a more accurate res- 

a control volume integration approach. A set olution of the flow and temperature fields around the 
of ordinary differential equations for momentum components. While insufficient to claim grid-inde- 
and energy is solved in time using a second-order pendent results, this refinement was more than 

accurate Runge-Kutta predictor<orrector method adequate for demonstrating the GA-based adaptive 
(RK2). solution methodology. 

To satisfy continuity and simultaneously obtain the 
pressure field, at each new time step the expected 
divergence-free velocity field is decomposed into a 

pseudo-velocity field that is independent of pressure 
and a separate contribution that is due to pressure. 
Using the RK2 algorithm, the pseudo-velocity is com- 

puted directly. The pressure contribution is defined 
by the discrete Poisson equation that results from the 
imposition of the divergence-free condition on the 
velocity field. This contribution is calculated at the 
end of each half-time step using the conjugate gradient 
method. With the velocity field known it is a simple 
matter to calculate temperature in a forced convection 

flow. When coupling arises between momentum and 
energy as a result of thermally-induced buoyant 

motions, the procedure described by lglesias et al. [ 161 
is employed. In this way three (in the present case 
two) velocity components, pressure and temperature 
are obtained on a staggered grid. The calculation pro- 

cedure has undergone rigorous testing in several two 
and three-dimensional unsteady flows described in 
Schulcr et ul. [7], Iglesias t’t cd. [16], Schuler [17], 
Treidler [IS], Humphrey ct al. [I91 and Tatsutani et 
cd. [20, 211. 

4.4. Validation run 

Before considering the general case involving 
heated components of arbitrary size, thermal scn- 
sitivities and heat fluxes, the pe~fiwmm~e corrrctness 

of the MSGA was established by reference to a case 
for which the arrangement of components minimizing 
their total failure rate was known a priori. In the 
present validation run, N = 8 heated components 
with the characteristics listed in Table 2 are to be 

arranged in the channel shown in Fig. 1 so that the 
cost function ,f; defined as ,f’= Z.,. is minim&d or, 
equivalently, the fitness function F given by equation 
(2) is maximized. In the expression for ,f’ the sum- 
mation is over all components i = I, N. As shown in 
the table, the components have identical heat transfer 

and geometrical characteristics but differ in their thcr- 
mal sensitivities, B,. WC know from a lumped for- 
mulation analysis for identical components with 
identical heat fluxes that to minimize their total failure 
rate they should be arranged in &ww~.sity or&r ot 

thermal sensitivity and this is what we wish to show. 

For the present calculations, constant physical 
properties of air at 300 K were used. As shown in 
Fig. 1, the two-dimensional calculation domain was 
bounded at the top and bottom by fixed channel walls. 
No slip, impermeable wall boundary conditions for 
the u and r velocity components were imposed along 
all solid surfaces. At the channel inlet u = Li and I’ = 0 

were uniformly prescribed, corresponding to a plug 
flow velocity profile. At the outlet we set 1’ = 0 and 
used the wave equation boundary condition, 
employed by Arnal et ul. [22], to calculate u. The 
convectiondiffusion form of the energy equation was 
solved for temperature. For this, a uniform value of 
T= 300 K was fixed at the inlet plane and the wave 
boundary condition was specified at the outlet. The 
top and bottom walls of the channel were prescribed 
as adiabatic. A constant heat flux was specified along 
each of the three exposed surfaces of each heated 
component. The values of the component heat fluxes 

are listed in Table 2 together with other relevant par- 
ameters. All the calculations were peformed with 
U = 0.5 m s-‘. yielding RF = 630 for the value of the 
Reynolds number. 

A few preliminary runs of the MSGA were con- 
ducted in order to select appropriate values for the 
crossover and mutation rate GA parameters. The fit- 
ness value for each candidate solution string was cal- 
culatcd using equation (2). Except for their thermal 
sensitivities, the components were identical in every 
respect for this validation run. Thus, it was necessary 
to execute the numerical algorithm only once to obtain 
the velocity and temperature fields. The maximum 
temperature for each component as a function of its 
position in the arrangement was provided as part ol 
the input to the MSGA. (We note that, due to the 

constant heat flux condition imposed on the three 
surfaces of any component, the maximum tem- 
perature of a component must arise on one of its 
three surfaces. For the conditions of this work. this 
maximum always occurred on the vertical down- 
stream surface of a component, in the inter-com- 
ponent recirculating flow region near the bottom wall 
of the channel.) 

The present study is primarily a proof of concept 
investigation. Buoyancy contributions to the balance 
of momentum were small and for expediency they 
were neglected in the bulk of the calculations. In 
addition, a relatively coarse non-uniform com- 

Table 3 presents a surntnary of the results obtained 
using the MSGA with a population size equal to 7, 
the number of generations equal to 7, and crossover 
and mutation rates set to 0.6 and 0.1. respectively. 
The results show that the MSGA uncovers onr of’ 
seorrd possible opttmal arrangements of the com- 
ponents, chromosome 473628 15, by Generation 7. 
Thus, within seven generattons the MSGA has cap- 
tured one of several possible schema reflecting a 
decreasing order of thermal sensitivity which, as pre- 



Table 2. Geometrical and thermal characteristics of the optimally art-anged com- 
ponents in the validation run and cxamplc cases. All components acre assigned the 

\aluc .-I, = 4635 K 
.~ 

Validation I-un Examples 

Height u 
(W :i ‘) (fr Mh ‘) 

Height ‘I, B, 
C‘omponcnt (cm) (cm) (W m ‘) (fr Mh ‘) 

I 0.2 200 200 0.2 200 400 
2 0.2 200 x00 0.2 300 400 
3 0.2 200 3000 0.2 200 I 600 
4 0.2 200 2000 0.2 300 I600 
5 I).:! X0 700 0.4 200 400 
6 0.2 200 800 0.4 300 400 
7 0.2 200 2000 0.4 200 1600 
x 0.2 200 800 0.4 300 1 ho0 

Table 3. MSGA report corresponding to the validation run: (a) input parameters for the MSGA; (b) initial population 

statistics: (c) detailed results for Generations I and 2: (d) detailed results for Generations 6 and 7: (e) statistics for 

Generations 2 and 7 

(a) 

MSGA input parameters 

Population sire 
Chromosome length 

Maximum generations 
Crossover probability 
Mutation probability 

Value 

7 
x 
7 
0.6 
0.1 

(b) 

Initial population statistics Value 

,r L 0.01228 

FL. 0.01 141 

FR,,,, 0.01179 

Generation I Generation 2 

String Fitness FR PI P2 .\_I .X2 String Fitness FR 

52368174 0 0.0 I228 0 0 0 0 8465732 1 0.00087 0.01 I41 
25136478 0.00001 0.01227 6 7 I 2 53178462 0.00045 0.01179 
8465732 I 0.00087 0.01 141 4 7 I 4 Xl372564 0.00037 0.01 188 
26348517 0.00069 0.0 I 1 59 4 7 I 4 26345718 0.00080 0.01144 
5786432 I 0.00065 0.01 I63 4 7 4 6 26374815 0.00107 0.01 I I8 
53428617 0.00062 0.01 I65 4 7 4 6 41358762 0.00090 0.01134 
81375462 0.000.55 0.01 I73 3 4 2 8 I5348672 0.000 I5 0.01210 

Gcncration 6 Generation 7 

String Fitness FR PI P2 .Y I .X2 String Fitness FR 

773 14865 0.0001 I 
46372815 0.00055 
27364815 0.00099 
26374815 0 
26374X15 0 
26473X15 0 
26374815 0 

(d) 

0.01107 2 3 3 4 47362815 0.0008 I 0.0 1037 
0.01063 3 

; 
3 3 4 26374815 0 0.0111x 

0.01092 3 0 0 27364815 0.00026 0.01092 
0.01 I I8 3 3 0 0 27364815 0.00026 0.01092 
0.01 II8 2 3 7 7 26374815 0 o.olI1x 
00l118 ’ 
0.01 I IX ; 

3 5 7 47362815 0.0008 I 0.01037 
I I 6 273 14865 0.00011 0.01107 

(e) 

Statistics 

FR In./\ 
FL, 
FR,,\, 

Generation 2 Generation 7 

0.01210 0.01 II8 
0.01 ! I8 0.01037 
0.01 I59 0.01086 
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dieted by the lumped formulation analysis, is the fea- 
ture responsible for good performance. By Gen- 

eration 7 other, less optimal, candidate solution 
chromosomes also show evidence of this desirable 
feature in their respective schema. 

The computational effort in terms of the number of 
fitness function evaluations required for obtaining an 
optimal sequence using the MSGA for the validation 
run was 49. This number is smaller, by a factor of 

about I I, than the number of expected function evalu- 
ations required by a purely random starch strategy. 
This is because the probability of finding any one of 

the optimal sequences randomly is 3! x 3! x 2!/8! (or 
11560) compared to l/49 for the present MSGA appli- 
cation. Thus, relative to a random search strategy the 
MSGA is more cost effective in its ability to find 
an optimal component sequence. Examples of other 
equivalently optimal sequences are given by the fol- 
lowing arrangements: 34728615, 47368251 and 
43762851. In combination with the crossover 

operator, it is the function of the GA mutation oper- 
ator to ensure that these sequences are also uncovered 
in the course of further generation calculations. 
Whether or not the additional solutions are necessary 
depends on the level of satisfaction of the nearly opti- 
mal solution(s) already obtained. 

5. RESULTS AND DISCUSSIONS 

Three variations of the Case Study Problem were 
investigated. In the first example minimization of the 
total thermal failure rate was the sole criterion for 
determining optimal candidate solutions. In the 

second example the additional requirement was 
imposed that the total interconnectivity length among 
wired components should also be minimal. These two 
examples assume forced convection flow. In a third 
example we examine the influence of buoyancy on the 
findings of the first two. 

For the Reynolds number explored, Re = 630, eddy 
shedding was absent and steady state was achieved in 
all the component arrangements calculated under the 
guidance of the GA. The CPU time required to com- 
pute the maximum steady state surface temperatures 
of the heated components was typically about 30 min 

on an IBM RS-6000/530, for the grid spacing and 
time step used. The results reported were obtained 
using the MSGA with a population size equal to 7. 
the number of generations equal to 7, and crossover 
and mutation rates set to 0.6 and 0.1, respectively. As 
in the validation run, the values of the 1, required 
to calculate total thermal failure rates were obtained 
using the maximum surface temperatures predicted 
by the numerical procedure. 

5.1. First example : optimization according to thermal 
sensitiritJ 

In this example N = 8 heated components of the 
size and thermal characteristics listed in Table 2 are 
to be arranged in the channel so that the cost function 

f= Ci, is minimized. Table 4 for this example shows 
that the average failure rate of the initial population 

is 0.02094 fr Mh- ’ while the average failure rate at the 
end of Generation 7 is 0.01953 fr Mh- ‘, a decrease of 
7%. The average failure rate could be further reduced 
if the GA parameters such as number of generations. 
population size, crossover and mutation rates were 
simultaneously optimized for the present problem 
(Grefenstette [ Ill). As expected, the calculations show 
that the heat transfer from N in-line heated com- 
ponents of different characteristics is quite sensitive to 
their relative positioning. The variation among failure 

rates for the various arrangements uncovered by the 
GA was as high as 25%. The best arrangement 
achieved by Generation 7 is given by chromosome 

41387562, with a failure rate of 0.01856 fr Mh ‘. 
The isotherms and maximum component tem- 

peratures corresponding to this arrangement are pro- 
vided in Fig. 2. Although not shown, flow streamlines 
revealed recirculating regions behind all the large 

components. It is particularly noteworthy that the 
average heat transfer coefficients of geometrically 
identical components with the same heat flux differ as 
a result of the dependence of h,,, on the relative 
location of the components. The dependence is due to 
the developing nature of the flow. Clearly, the assump- 

tion invoked in many electronics cooling applications, 
that II,,, is constant for a component irrespective of 
its relative location, is generally incorrect and bears 
upon the issue of problem formulation accuracy dis- 
cussed in the Introduction. 

The characteristics of good candidate solutions are 

associated with geometry. heat flux and thermal sen- 
sitivity. Figure 3 provides a graphical illustration of 
the component arrangements corresponding to the 
seven chromosomes in Generation 7 of Table 4. In 
the figure the arrangements are ranked from top to 
bottom in decreasisng order of fitness. In each 
arrangement, components with the higher of the two 
heat flux values are drawn with a bold line while those 
with the lower heat flux value arc drawn with a light 
line. Components with the higher of the two B, values 
are shaded while those with the lower B, value are left 
blank. Visual inspection of these results immediately 
reveals two underlying patterns. First. that com- 
ponents with the higher value of B, tend to be clustered 
near the channel inlet. Second. that components with 
the higher value of heat flux tend to be clustered at the 
outlet. However, a close inspection of the arrangement 
with the highest value of fitness in this generation 

suggests that a clustering of components according 
to bath thermal sensitivity and size, with the small 
components ahead of the large. appears to outweigh 
clustering according to heat flux. Interestingly, the 
worst arrangement in this generation also shows small 
components clustered ahead of large components but, 
because clustering according to thermal sensitivity 
is absent in this arrangement, it has a low value of 
fitness. 

Such findings would be difficult to uncover, 
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Iablc 4. MSGA report corresponding to the first caamplc: (a) input parameters for the MSGA: (b) initial population 
statistics: (c) &tailed results for Generations I and 2: (cl) detailed resuhs for Generations 6 and 7: (e) statistics for 

Generations 2 and 7 

MSGA input parameters Value 

Population six 7 
Chromosome length 8 

Maximum generations 7 
Crossover probability 0.6 
Mutation probability 0. I 

Initial population statistics 

FL, 
FL, 
FR ‘“p 

Value 

0.0232 I 
0.018X8 
0.02094 

(a) (b) 

Generation I Generation 2 

String Fitness 

52368174 0.00042 
25 136478 0 
8465732 I 0.00365 
26348517 0.00271 
5786432 I 0.00202 
53428617 0.0027X 
81375462 0.00433 

_~._____ 
(C) 

FR 

0.02279 
0.02321 
0.01957 
0.02050 
0.021 I9 
0.02044 
0.0 I888 

PI P2 .y I .X2 String 
..____._______~__ 

7 7 I 2 81675432 
7 7 I 2 81375462 
5 7 I 4 31574826 
5 7 1 4 568 13472 
4 7 4 6 26374815 
4 7 4 6 41358762 
3 4 2 8 153486’72 

Generation 6 Generation 7 

String Fitness 

41357862 0.00072 
85371462 0.00109 
Xl375462 0.00132 
87351462 0.00 IO5 
543 I8762 0 
75384162 0.00089 
8537 1462 0.00109 

(cl) 

FR 

0.01948 
0.0191 I 
0.01888 
0.01916 
0.02020 
0.01932 
O.OlYl I 

PI P2 .Vl X-2 String Fitness FR 
.___ 

I 3 5 7 81375462 0.002 I5 0.01888 
I 3 5 7 41357268 0 0.02103 
I 2 0 0 41357862 0.00 I54 0.01948 
1 2 0 0 8537 1462 0.00192 0.0191 I 
I 6 I 2 753 14862 0.00070 0.02033 
I 6 I 2 41387562 0.00247 0.01856 
6 I 3 4 78354162 0.00 I72 0.01930 

Fitness 

0.001 I5 
0.00269 
0.00222 

0 
0.00132 
0.00195 
0.00019 

FR 

0.02042 
0.01 X88 
0.0193s 
0.02157 
0.02025 
0.01962 
0.02137 

.____ 

Statistics Generation 2 Generation 7 

FL, 0.02 I57 0.02103 
FR 11111, 0.01888 0.01856 
FR,,: , 0.02021 0.01953 

- 

especially in more complex flows, without an adaptive 
solution methodology. If a ‘rule’ were to be extracted 
from the findings specific to this example it would 
be that: for conditions similar to those calculated, 
involving components with compaI,able values of their 
heat fluxes, arrangements with high values of fitness 
(low thermal failure rates) will have small components 
preceding large ones and components with large 
values of thermal sensitivity preceding components 
with small values of this quantity. The observed 
dependence of solution optirnality on component size 
is not surprising since arrangements consisting of 
small heated components immersed in the wakes of 
larger ones arc especially unfavorable for heat transfer 
from the smaller components. 

Having detected and ranked the fcaturcs respon- 
sible for good performance in this example, the 

arrangement in Fig. 3 with highest fitness can be fur- 
ther improved ~ilhout using the MSGA. For example, 
moving component 1 from its present location in that 
chromosome to a position between components 7 and 
5 yields the chromosome 43871562. In accordance 
with the rule just extracted, this chromosome has all 
t&r components with high B, ahead of those with low 
B,, and these first four components arc arranged so 
that the small ones precede the large. A numerical 
calculation of the flow and temperature field for the 
new arrangement yielded a total failure rate 
FR = 0.01810 fr Mh ~’ which is 2.5% smaller than 
the failure rate associated with the best chromosome 
in Generation 7. 

The discussion of this example shows that: (a) 
sufficiently detailed calculations (or measurements) of 
the convective heat transfer characteristics of complex 
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h 17.4 10.5 9.2 9.9 6.6 6.3 7.5 6.5 
“S 

T 351 339 341 367 356 357 378 372 

COMP. 4 1 3 8 7 5 6 2 

h % 17.4 10.5 9.2 8.5 8.0 8.1 7.1 5.2 

T 351 339 341 348 364 375 381 364 

COME’. 4 3 1 7 2 8 6 5 

FIG. 2. Isotherms and maximum component temperatures for the best arrangements obtained by the 
genetic algorithm for the first example (top; 41387562) and the second example (bottom; 43172865). 
Average heat transfer coefficients, maximum surface temperatures and component identification are shown. 

geometrical configurations are necessary to provide 
the flow field information (velocity, temperature, and 
associated quantities) from which performance mea- 
sures are to be determined and the satisfaction of 
constraints verified ; (b) by preserving and exploiting 
the features associated with good performance, in just 
a few generations a GA is capable of evolving an initial 
population of chromosomes, here arrangements of 
components, into families of solutions with improved 
performance. It is precisely the ability of a GA to 

uncover and propagate, on average, the schemata of 
high performance chromosomes that makes this 
approach so cost-effective, especially during the early 
stages of a search. 

5.2. Second example : optimization according to ther- 

mal sensitivity and wiring length 

In so far as the channel configuration, flow con- 
ditions and the characteristics of the heated com- 
ponents are concerned, the second example is identical 

to the first example. As before, we wish to find ther- 
mofluids-optimized arrangements of the same eight 
heated components that minimize the sum of their 
failure rates subject to the additional requirement that 
the total interconnectivity length among the com- 
ponents, specified according to a pre-established inter- 
connectivity matrix, also be minimized. Thus there 
are now two, possibly competing, criteria to be 
weighted in the optimization process. The present 
interconnectivity requirement is that all small com- 
ponents and all large components should be wired 
among themselves, respectively, but that no small 
component should be wired to any large component. 

The function J to be minimized now has the fol- 
lowing form : 

f = (CA,) ‘yC,CCMJ.,,) I.“‘. (3) 

In equation (3) C, is a scaling factor, calculated for 
each generation in order to render the average con- 
tribution of the interconnectivity term in the product 
comparable in magnitude to the average contribution 
due to the total failure rate. The quantity M,, denotes 
the (i, j) component of the interconnectivity matrix 
specified, a number equal to 0 or 1. L,, denotes the 
wiring length between components ‘i’ and :j’. In the 
double summation, the outside sum is over the values 
i = 1, N and the inside sum is over the valuesj = i, N. 

The exponents l/m and I/n determine the relative 
weights of the two terms in equation (3) subject to the 
constraint that 1 /m + 1 /II = 1. In the present example 
we have set l/m = 1 /n = l/2 for illustration purposes. 

The use of equation (3) ensures that configurations 
which perform relatively well under hoth criteria will 

yield the highest fitness values calculated by equation 
(2). As before, the numerical procedure provides the 
maximum surface temperature for each component, 
necessary for calculating the individual failure rates. 
The total interconnectivity length for any arrange- 
ment is calculated within the MSGA according to the 
interconnectivity matrix specified. As indicated by the 
double summation, this involves the sum of the wiring 
lengths among all wired components, here connected 
center to center. 

The chromosomes resulting from GA-guided cal- 

culations of populations evolving over seven gen- 
erations (not shown here) revealed that both the fail- 
ure rate and interconnectivity length are sensitive to 
the positioning of the heated components. These two 
quantities varied by up to 12 and 54%, respectively, 
among the various arrangements uncovered by the 
MSGA. For this second example, where two criteria 
are simultaneously imposed to establish good can- 
didate solutions, the average failure rate and inter- 
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FIG. 3. Different component arrangements obtained at the end of Generation 7 by the application of the 
genetic algorithm in the first example. The arrangements are listed in order of fitness with the best at the 
top. In the figure: bold lines enc!osing boxes correspond to y = 300 W mm’, light lines enclosing boxes 
correspond to q = 200 W m ‘, tall boxes correspond to components of height 0.4 cm, short boxes 
correspond to components of height 0.2 cm, shaded boxes correspond to components with B, = 1600 fr 

Mh ‘, blank boxes correspond to components with B, = 400 fr Mh ‘. 

connectivity length of the initial population were 

0.02020 fr Mh ’ and 1.44 m, respectively. By Gen- 
eration 7 the average failure rate and interconnectivity 
length (calculated using the different arrangements 
only) had dl,opped by 4 and 24%, respectively. com- 
pared to the initial population. The best chromosome 
in Generation 7 was found to be 43172865 and it 
appeared listed four times in that generation as a result 
of its dominance. This chromosome represents an 
arrangement with a total failure rate of 0.01920 fr 
Mh ’ and an interconnectivity length of I .04 m. The 
corresponding isotherms and maximum component 
temperatures arc shown in Fig. 2. 

Figure 4 provides a graphical illustration of the 
component arrangements corresponding to the seven 
chromosomes obtained by Generation 7 of this exam- 
ple. (As in Fig. 3. the arrangements are ranked from 
top to bottom according to fitness and repeated 
arrangements arc drawn only once. The encodings for 
size, thermal sensitivity and heat flux in this figure are 

the same as for Fig. 3). The interpretation of the 
results in Fig. 4 is facilitated by reference to Fig, 3, 

where the minimization of thermally-induced failure 

rates was the sole criterion for optimization. We start 
by noticing that the best arrangement in Fig. 3 has a 
smaller failure rate than the best arrangement 
obtained in Fig. 4, but that it also has an inter- 
connectivity length which is 23% higher. It is clear 
from the best arrangement in Fig. 3 that a minimal 
wiring condition would immediately result if com- 
ponent 2 were placed between components 3 and 8. 

However. this would come at the cost of moving com- 
ponents 8 and 7 with high B, into a hotter portion of 
the coolant stream where the risk of thermal failure is 
larger. (Recall the rule extracted from the results of 
the first example.) Thus. what would be gained in 
performance by minimizing the wiring length of the 
best arrangement in Fig. 3 would be partly lost to an 
increased thermal failure rate. 

The compromise solution evolved in the present 
example by the time the MSGA reaches Generation 
7 is reflected in the best arrangement shown in Fig. 4, 
where component 2 appears between components 7 
and 8. In this arrangement the total wiring length has 
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I 5 8 6 

FIG. 4. Different component arrangements obtained at the end of Generation 7 by the application of the 
genetic algorithm in the second example. The arrangements are listed in order of fitness with the best at 

the top. The encoding of component size, heat flux and thermal sensitivity is as specified in Fig. 3. 

been reduced significantly by respectively clustering 
small and large components closer together. But by 

keeping component 7 with high Bi ahead of 2. the 
(unavoidable) iricrease in the total thermal failure of 
this arrangement has been kept small. The best 
arrangement, obtained by the MSGA, was artificially 
altered to be 43 127865, in order to further reduce the 
total interconnectivity length from I .04 to 0.8 m, the 

minimum value. This changed the cost function given 
by equation (3) fromf’= 0.0084 for the original chro- 
mosome to 0.0075 for the altered one, a decrease of 
almost I I %. The corresponding effect on the thermal 
failure rate was to raise it slightly, from FR = 0.01920 
to 0.01962 fr Mh ‘, an increase of 2.2%. 

The second example shows clearly the competing 
effects between component geometrical layout (aim- 
ing to minimize interconnectivity) and thermofluids 
performance (aiming to minimize thermally-induced 
failure rates). At this level of configuration 
complexity, numerical calculadons (or measure- 
ments) of the flow and temperature fields are indis- 
pensable for evaluating the maximum component 
temperatures and interconnectivity lengths required 
by the fitness function. 

5.3. Third exumple : the ejfticts c!f’huoyunq 
In the above two examples, the Reynolds number 

based on the inlet velocity, U, and the channel height, 
H, was Re = 630. The Grashof number based on the 
length of a component, Ll, was Gr = 51 740 and, 
therefore, the ratio Gr/Rr’ was of order 0.1. This led 
us to assume that the flow field calculations could be 
performed neglecting buoyant contributions to 
momentum. We now revise this assumption and 
establish the attendant impact on the results obtained. 

The temperature fields shown in Fig. 2 correspond 
to the best forced convection arrangements obtained 
in the first (41387562) and second (43172865) exam- 

pies, respectively. The fields for these two arrange- 
ments were recalculated employing the Boussinesq 
approximation to model the buoyant contribution to 
momentum. For this, the CUTEFLOWS numerical 
procedure was extended as explained in Iglesias et al. 
[16]. Otherwise, as before, constant physical prop- 
erties for air at 300 K were used. With reference to 
Fig. I, two channel orientations were explored for the 
best arrangement already determined for each exam- 
ple: (i) a horizontal orientation, with the channel 
aligned in the .Y coordinate direction and gravity 
aligned in the y coordinate direction; and, (ii) a ver- 
tical orientation, with the channel and gravity both 
aligned in the .Y coordinate direction. 

The resulting buoyancy-affected temperature fields 
for each arrangement (not shown here) were very 
similar to those corresponding to Fig. 2 irrespective 
of the channel orientation. Notwithstanding, in the 
presence of buoyancy the maximum surface tem- 

peratures predicted for some of the components were 
sufficiently different to significantly alter the total ther- 
mal failure rates of these two arrangements and Table 
5 summarizes the findings. The tabulated results show 
that for the conditions calculated the temperatures of 
the first four to five components in an arrangement 
are relatively insensitive to orientation as a conse- 
quence of the weakness of the buoyancy-induced flow. 
However, the last three to four components in an 
arrangement show a significant dependence on orien- 
tation. For these components, the cumulatit~e effect of 
buoyancy has been to enhance the heat transfer from 
them, but to a larger extent for the vertical orientation 
than for the horizontal. This is because in the vertical 
orientation the imposed and buoyancy-driven con- 
tributions to momentum are aligned in the same direc- 
tion; they combine to increase the heat transfer 
coefficients of the heated components relative to the 
horizontal orientation where the two contributions to 
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Arrangcment~oricnt;ltion 

Horizontal (nb) 
Horkwntal (h) 
VCrlical (b) 

First example 

4 I : x 7 .Y 6 3 FR 

351 339 341 367 356 357 37X 372 0.0 I X56 
350 339 341 366 356 357 377 312 0.01852 
350 339 341 365 353 353 371 370 0.01741 

Second example 
______~ 

Arrangcmenl’orientation 4 3 I 

Horizontal (nb) 351 339 341 
Horizontal (b) 350 339 341 
Verlical (b) 350 339 341 

momentum are mutually perpendicular. In this 
regard, WC note that component arrangements in a 
vertical channel have failure rates 6-7%) lower than 
the same arrangements in a horizontal channel. 

These observations reinforce the point raised in the 
Introduction, concerning the importance of imple- 

menting accurate physico-mathematical for- 
mulations and numerical solution methodologies in 

complex thermofluids optimization problems. 

Because of the coupling between temperature and vel- 
ocity. free and mixed convection flow conditions add 

to the complexity of finding optimal or nearly optimal 
arrangements of convectively cooled electronic com- 
ponents. further emphasizing the need for adaptive 
solution methodologies. In flow configurations simi- 
lar to the one examined here. for values of 
Gr/Rr’ > 0.1 the thermal failure rates of electronic 

components in channel gcometrics may depend sig- 
nificantly on buoyancy-induced motions and, hence, 
on configuration orientation with respect to gravity. 

The performance correctness of the MSGA was 
established through the validation run discussed in 
Section 4.4. It was shown there that the MSGA 
arranges identical components with identical heat 
fuxes in dccrcasing order of thermal sensitivity. That 
this is correct follows from the fact that all arrangc- 
mcnts of components with the same geometry and 
heat flux will yield the same relative temperature 
distribution in a ventilated channel; that is, 
monotonically increasing for both the fluid and the 
components from the inlet to the outlet planes. 
Thus, the optimal arrangement of such components is 
that which associates the smallest values of maximum 
temperature with the most thermally sensitive com- 
ponents. This results in the ordering according to 
decreasing values of thermal sensitivities and is the 
basis for the .secondrule of thumb discussed in Section 
4.1. 

There is a difficulty with the ,first rule of thumb 
which states that. if the components are geometrically 

7 2 8 6 5 FR 

34X 364 375 381 364 0.01920 
347 363 374 380 364 0.01888 
346 363 370 374 360 0.01756 

identical and their thermal sensitivities are the same. 
they should be arranged in an increasing order of their 
heat fluxes. As mentioned earlier, this conclusion is 

correct only for flow configurations allowing a lumped 
formulation analysis of the flow. To apply, the analy- 
sis requires that the flow field should be thoroughly 
mixed anr: thermally homogeneous in the space 
around each component. (This is the ‘tank-and-tube’ 
approximation referred to in the Introduction.) The 
requirement is not met for the conditions of the pre- 
sent study which is typical of the materials and flow 
conditions in electronic cooling applications. In par- 
ticular, the presence of recirculating flow regions 
between components is the cause for the occurrence 
of non-uniform and relatively high temperatures. 
particularly on the downstream surfaces of the 
components in the present ventilated channel 

configuration. 
That the first rule of thumb can lead to non-optima/ 

arrangements ofcomponents with different heat fluxes 
was verified numerically. For this we calculated the 
velocity and temperature fields associated with N = 8 
components of identical size (the smaller size in Table 
2) and identical thermal sensitivity (A, = 4635 K and 
B, = 1600 fr Mh ‘, i = 1, 8). The component heat 

fluxes were (/, = 100 W m ‘, (j2 = 200 W m ‘. 
qi = 300 W m ‘, . ys = 800 W m ‘. Temperature 
distributions like those shown in Fig. 2 were obtained 
for two arrangements : one in which the components 
were arranged in increasing order of their heat fluxes : 
another in which they were arranged in decreasing 
order. From the calculated component maximum sur- 
fact temperatures, T,, the total failure rates, f= E:i.,. 
were obtained for each of the two arrangements. 

Table 6 summarizes the results. This shows that, 
contrary to the recommendation of the first rule of 
thumb, it is the ordering according to &~re~,siny heat 
flux which yields the arrangement with smaller total 
thermal failure rate (0.153 fr Mh ’ vs 0.183 fr 
Mh ‘). Inspection of the individual component tem- 
peratures and their associated failure rates shows why. 
When placed in order of increasing heat flux, the first 
four components acquire smaller values of r, than 
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Table 6. Maximum surface temperatures and thermal failure 
rates for eight components of identical size (small size in 
Table 2) and thermal sensitivity (A, = 4635 and B, = 1600, 
i = 1,8) arranged according to increasing (top) and decreas- 
ing (bottom) order of their heat fluxes: q, = 100 W mm’, 
qz = 200 W mm>, yz = 300 W mm’, ., qx = 800 W mm’. 
The total failure rates are XI, = 0.183 for case (a) and 

X1, = 0.153 for case (b) 

‘I1 4Z 41 Y4 4, Yh 47 Y8 

T, 317.0 335.5 355.5 376.4 398.2 420.9 444.4 468.9 
i, 0.001 0.002 0.004 0.007 0.014 0.026 0.047 0.082 

Yx % % 45 q4 4, Yz YI 

T, 434.6 432.1 424.0 412.3 398.2 382.4 365.2 347.1 
I, 0.037 0.035 0.029 0.021 0.014 0.009 0.005 0.003 

when placed in order of decreasing heat flux. 
However, the opposite is true for the last three com- 
ponents which acquire larger values of Tp In particu- 
lar, the last two components of the arrangement 
ordered according to increasing heat flux have tem- 
peratures s&ziJicantly larger than the temperatures of 
the hottest components arranged according to 

decreasing heat flux. Since, according to equation (I), 
component failure rate is exponentially dependent on 
temperature, this results in a higher total thermal fail- 

ure rate for the arrangement ordered according to 
increasing heat flux. 

6. CONCLUSIONS 

This study demonstrates how an adaptive meth- 

odology can be used to efficiently search the solution 
spaces characterizing complex thermofluids con- 
figurations in order to establish optimal performance 
conditions. The demonstration was based on recur- 
sively solving the conservation equations and bound- 
ary conditions describing an electronics cooling prob- 
lem under the guidance of a GA. It could also have 
been based on performing the equivalent experiment. 
In the process of uncovering possible solutions, a GA 
dynamically gathers information, detects features 
responsible for good performance and exploits these 
features to generate improved solutions for the prob- 
lems considered. Because of the high dimensionality 
and strong non-linearities typical of complex ther- 
mofluids problems, it would be impracticable to 
search through the multiplicity of their solutions with- 
out an adaptive technique. 

The GA optimization strategy is premised on the 
notion that features responsible for good performance 
should emerge and be propagated within a calculable 
number of generations as a result of selection, cross- 
over and mutation operators applied to the chro- 
mosomes encoding this information. In principle, the 
combined effects of the crossover and mutation oper- 
ators is to guarantee that the entire solution space is 

explored irrespective of its topology ; that is, irres- 
pective of the number of maxima or minima char- 

acterizing the space. In this regard, the GA approach 
is superior to the more traditional optimization pro- 

cedures. 
Typically, a GA will provide not one but several 

possible solutions that satisfy problem constraints in 
different ways. The availability of a family of accept- 
able solutions provides the flexibility needed to sim- 

ultaneously satisfy design criteria involving geo- 
metrical, electrical, mechanical and related cost 

constraints. It has been our experience that the first 
few generations of chromosomes obtained by a GA 
often suffice to provide qualitative guidance con- 
cerning the influence of variables and/or parameters 

on performance trends and problem solution opti- 
mality. This knowledge allows the investigator to 
shortcut the GA by constructing and testing new chro- 

mosomes which are likely to represent acceptable 
solutions. If, however, they turn out to be unsat- 
isfactory, these improved investigator-generated 

strings can be seeded as new members of the popu- 
lation in further GA calculations. This approach has 
the potential for significantly accelerating the attain- 
ment of optimal or nearly optimal solutions. 

The variations of the case study problem explored 

in this investigation served to illustrate the way a GA 
can be used in the context of an adaptive solution 
methodology. Among the main effects examined was 

the dependence of solution optimality on the cost 
function specified, especially in the presence of com- 
peting effects. Thus, in the present application to 
heated electronic components in a ventilated channel, 
a minimization of thermal failure rates was favored by 
clustering components according to size and thermal 
sensitivity. In contrast, a minimization of wiring 
length was favored by clustering them according to a 
predetermined interconnectivity matrix. The nearly 
optimal arrangements uncovered by the GA for N = 8 
components of different size, heat flux and thermal 
sensitivity were far from obvious. They point to 
unconventional ways for arranging components so 
that flow-surface interactions favor heat transfer. In 
this regard it has been shown that the neglect of buoy- 
ant effects, or the implementation of ‘rules of thumb’ 
derived from physicoPmathematical models lacking 
formulation accuracy (or derived from inappropriate 
experiments), can lead to non-optimal arrangements 
of components. 

In the above examples the times required to obtain 
optimal solutions were relatively small because of the 
coarseness of the grids used and the steady two-dimen- 
sional nature of the flow fields. More complex 
unsteady three-dimensional problems using the same 
methodology will require dense grids, high per- 
formance machines, and/or distributed computing 
environments. An alternative to the physico-math- 
ematical model approach is to conduct a GA opti- 
mization search with an experimental apparatus pro- 
viding the quantities required by the cost or fitness 
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functions. Of course, hybrids of numerical and exper- 

imental approaches under GA control arc also poss- 

ible and this is the subject of continued ICEME 
research. 

In concluding we note the considerable potential in 

~‘1 uwus of science and engineering for adaptive solu- 
tion methodologies based on GAS. In particular. the 
heat transfer community can expect to see a significant 
increase in pioneering applications of such meth- 

odologies to many complicated thermoscicnces prob- 
lems admitting optimization in some sense. These 
exciting applications are being facilitated by the 

increased availability of high performance computers, 
distributed computing environments and improved 
guidelines for the specification of the necessary GA 

parameters. 
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